Performance
Linee guida per ottimizzare le performance del codice Ruby e Rails nei progetti PANDEV.
🚀 Performance Ruby Generale
String Operations
❌ Evitare:
# String concatenation in loop
result = ""
1000.times { |i| result += "item #{i}" }
# Multiple gsub calls
text.gsub(/foo/, 'bar').gsub(/baz/, 'qux').gsub(/old/, 'new')✅ Preferire:
# Use array join
items = []
1000.times { |i| items << "item #{i}" }
result = items.join
# Chain gsub or use single regex
text.gsub(/foo|baz|old/, 'foo' => 'bar', 'baz' => 'qux', 'old' => 'new')
# Or frozen strings
TEMPLATE = "Hello %s".freeze
result = TEMPLATE % nameArray/Hash Operations
❌ Evitare:
✅ Preferire:
Method Calls
❌ Evitare:
✅ Preferire:
🗄️ Database Performance
Query Optimization
❌ Problemi N+1:
✅ Eager Loading:
Selective Loading
❌ Evitare:
✅ Preferire:
Index Usage
❌ Queries senza indici:
✅ Con indici appropriati:
Batch Processing
❌ Evitare:
✅ Batch Processing:
🏃♂️ Rails Performance
Controller Optimization
❌ Evitare:
✅ Ottimizzato:
View Optimization
❌ Evitare:
✅ Ottimizzato:
Caching Strategies
Fragment Caching:
Low-level Caching:
Russian Doll Caching:
📊 Monitoring e Profiling
Profiling Tools
Gemfile per profiling:
Memory Profiling:
CPU Profiling:
Query Analysis
Log Analysis:
Bullet Gem (N+1 Detection):
🔧 Production Optimization
Server Configuration
Puma Configuration:
Database Connection Pool:
Background Jobs
Sidekiq Optimization:
📈 Performance Metrics
Key Metrics da Monitorare
Response Time: < 200ms per API requests
Database Query Time: < 50ms per query
Memory Usage: < 200MB per worker
Cache Hit Rate: > 90%
Background Job Queue: < 100 pending jobs
Monitoring Setup
Application Performance Monitoring:
🚨 Performance Anti-patterns
Da Evitare Assolutamente
Queries in Loop: Sempre usare eager loading
Loading tutto in memoria: Usare pagination e batch processing
No caching: Implementare caching strategy appropriata
Ignoring indices: Sempre analizzare query plans
Synchronous external calls: Usare background jobs
No monitoring: Implementare metrics e alerting
Code Review Checklist
Seguendo queste linee guida, i progetti PANDEV manterranno performance ottimali anche con il crescere della complessità e del volume di dati.
Last updated
Was this helpful?